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Thermochemical cycles

A thermochemical cycle (TC) is a process consisting of linked steps at varying reaction conditions

Products 1

Reactants 1 Reactants - Products
Step 1 Materlal 1 Reactants 2
‘ eactanis Reactants 1 - Products 1

Reactants 2 - Products 2
Reactants 3 - Products 3
Material 3

Step 2 Heat exchange with the surroundings
AH, = AH + AH. + AH
Products 3 tot =
‘ Products 2 One or more materials are used
roducts v’ their composition is modified during

Material 2
the different steps

v’ their initial state is restored at the end
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Examples

Chemical looping combustion
Chemical looping reforming
Chemical looping gasification
Water/Carbon dioxide splitting
CO, capture and methanation
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Endothermic processes can be sustained by renewable heat sources
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Thermochemical cycles: a multidisciplinary issue

Materials, reactors and heat sources / users
must adapt to each other in processes

showing different reaction conditions, which
l ‘ are also different in each step.
Reactor “ Material

Different expertises are needed to develop a successful TC process




Materials

With respect to the overall cycle, they can be seen as catalysts (no modification). However, with respect to
each step, for the most of the processes, they are reactants.

v high oxygen storage capacity

v’ fast reduction/oxidation kinetics
v’ low working temperatures

v good thermal stability

v good cyclability
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Oxygen carriers for Chemical Looping Combustion
.ﬁ? Capture ready

Fuel

Air }
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Lanthanum oxysulphates doped
with trantion metals (Co, Mn, Cu)

La,0,50, +4 H, - La,0,S+4 H,0
(reduction)

La,0,S +2 0, - La,0,50,
(oxidation)

Doping with transition metals
increases both performances and
thermal stability of La,0,50,

Repeatable cycles
Stoichiometric
reduction/oxidation

High selectivity to H,0O
and CO,

Negligible
degradation of carrier
by sulphate
decomposition
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5% CH /air cycles @800°C over Co-doped
lanthanum oxysulphate
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Oxysulphates for Chemical Looping Combustion ™
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CLC cycles @950°C
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Oxygen carriers for Chemical Looping Reform

CO, utilization
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Oxygen carriers for Solar Thermochemical Spl
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Perovskite for CO,/H,0 splitting
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Different B cations is an effective strategy to manage
both the self-reducibility and the splitting activity




Ceria/zirconia for CO,/H,0 splitting

Advanced preparation routes
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Ceria/zirconia for CO,/H,0 splitting
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Advanced preparation routes

Positive effect of doping (K, Cu, Fe) and
co-doping (K-Cu, K-Fe)

EPR and XPS analysis
» Activity related to both bulk and surface oxygen
vacancies




Reactors

v" Good heat transfer

v" Good mass transfer

v" Good interaction with sun radiation

v Cycling among different reaction conditions

Fluidized bed reactors appear the
best choice
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Chemical Looping with Oxygen Uncoupling - C

Main drawbacks

P

Paradigm
Slip of volatile matter <
Elutriation of char fines
—> Unburnt fuel




The concept of the Two-stage FUEL REACTO

il

Reduced Oxygen Carrier
Unburnt Fuel
to the Air Reactor

Oxygen Carrier from
the Air Reactor

AAAA

Outlet gases

compounds

Volatile Matter

Fluidizing gas

Exploiting of CLOU effect for combustion of the
most difficult part of the fuel: Char

Conversion of VM using the residual oxidative
potential of the OC

RTD is closer to a plug flow than a single-stage FR
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Two-stage FUEL REACTOR: main results
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Oxygen carrier: CuO (50% in mass) on ZrO,

Fuel: bituminous South-African coal
(VM: CO CO,H,H,0 CH,)

SS: single-stage TS: two-stage

CS: single-stage + carbon stripper

The two-stage fuel reactor shows the best
performances in terms of:

combustion efficiency;
volatile matter and char conversion;
carbon-to-CO, conversion efficiency;
loss of elutriated carbon;
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Novel reactor concept: Directly Irradiated
Fluidized Bed Autothermal reactor (DIFBAR)

h Concentrated solar radiation
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European Energy Research Alliance
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Concentrated solar radiation

CO,/H,0 TC splitting in solids closed loop

Inert gas, O,

Solar energy

Inert gas

Reduction
T high
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Oxidation

CO/H,
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Conclusions

* Thermochemical cycles can be designed for CO, capture/utilization
* Redox materials can be adapted to the requirements of the specific process by proper

formulations and preparation methods, showing

* High oxygen storage
* Good thermal stability and cyclability

* Good selectivity to the desired products
* Novel reactor configurations can be designed in order to improve the overall performance

of the cycle
* Improved conversion

* High efficiency
* Lower emissions
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